Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 13: 882197, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35800445

RESUMO

Linseed oil (LO) is known for its exceptional nutritional value due to the high content of alpha-linolenic acid (ALA), an essential omega-3 polyunsaturated fatty acid; its anticarcinogenic effect has been established in several experimental and epidemiological studies. As an adjuvant of chemotherapeutic agents, LO and other ALA-rich vegetable oils have been studied in only a handful of studies at the experimental level. However, the efficacy of antitumoral therapy using doxorubicin (Dox) in combination with ALA and ALA-rich substrates has not yet been investigated. In this work, the antitumor activity of LO in a wide dose range was studied with monotherapy and combined with Dox in animal models with Pliss lymphosarcoma (PLS) and Lewis lung adenocarcinoma (LLC). It was founded the daily oral administration of LO (1, 3, and 10 ml per 1 kg) to rats (PLS) and 6 ml/kg to mice (LLC) for 11-12 days from 7 days after subcutaneous transplantation of tumors has a stable statistically significant effect on the dynamics of tumor growth, reducing the intensity of tumor growth and increasing the frequency of complete tumor regressions (CR) compared with the control. LO showed high antimetastatic activity in the LLC model. Furthermore, LO at a dose of 3 ml/kg potentiates the antitumor effect of Dox in the PLS model, reducing the volume of tumors at the end of treatment by 2.0 times (p = 0.013), the value of the tumor growth index by 1.6 times (p < 0.03) and increasing the frequency of CR 60 days after the start of therapy by 3.5 times (p = 0.019) compared with the use of Dox alone. The combination of Dox and LO or fish oil allows growing efficiency therapy of LLC in comparison with Dox alone, increasing the frequency of CR to 73.68% and 94.4%, respectively, and reducing the frequency of metastasis to zero.

2.
Free Radic Res ; 55(7): 745-756, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34085882

RESUMO

It has been shown that the development of coronavirus infection (COVID-19), especially in severe cases, is accompanied by hypoxia as a result of several pathological processes: alveolar blood supply disorders, hemolysis, COVID-associated coagulopathy. Under these conditions, the level of reactive oxygen species is increased and it is more likely that free-radical damage to biomolecules is caused by the process of free-radical fragmentation than oxidation. In contrast to the oxidation process, free-radical fragmentation reactions are more effectively inhibited by oxidizing agents than reducing agents. Therefore, the use of substances possessing both reducing and oxidizing properties, such as natural and synthetic quinones, bioflavonoids, curcuminoids, should reduce the probability of biomolecule destruction by oxidation as well as free-radical fragmentation processes.HighlightsCOVID-19 is accompanied by the iron release from the heme and «silent¼ hypoxiaROS initiate fragmentation reactions of biomolecules under conditions of hypoxiaBlocking of fragmentation process by oxidizers may lead to mitigation of COVID-19.


Assuntos
COVID-19/metabolismo , Radicais Livres/metabolismo , SARS-CoV-2/metabolismo , COVID-19/patologia , COVID-19/virologia , Radicais Livres/efeitos adversos , Heme/metabolismo , Humanos , Ferro/metabolismo , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , SARS-CoV-2/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...